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Abstract. riipiBLAST is aii opeii-source parallelizat,ioii of BLAST tliat 
achieves sirperlinenr speed-up by segineriting a BLAST database arid 
tlieri Iia.virig each iiode i r i  a coiriput.atioiia1 cluster search a unique por- 
tioii of tlie tlatabixe. Da taba.se segrneiitat,ioii permits each riodo to search 
a smaller portiori of the database, eliminating disk 1/0 and vastly im- 
proving IITAST perforinarice. 13ecause thtnbase segrrieiitaliori does riot, 
create lieavy coinrriuriici~tinii tlerriatids, BLAST users can take advantage 
of low-co:;t iuid cflicient Liiiux cliister architectures sucli as the bladed 
Beowulf' (8, lG]. In ~~dditiori  to preseiiting tlic softwarc architecture of 
rripiBLAST, we preserita detailed perforina.iice analysis of rripiBLAST 
to tlerrioiistra(,e its scalability. 

1 Introduction 

The 13LAST fairiily of scqueiice diitnbnse-searcli dgorithms serves as the fouiida- 
tion for much biological research. The BLAST algorithms search for similarities 
between a short query sequerice and a large, infrequently changing database of 
DNA or a.miiio acid sequences [I ,  21. Newly discovered sequences are commonly 
searcliccl aga,iiist ii. dat,a.base of kiiown DNA or amino-a.cic1 sequences. Similari- 
ties hetween the new sequence tirid a gene of known function can help identify 
the function of the new sequence. Other uses of BLAST searches include phy- 
logenetic proliling a.ntl pairwise genome alignment. Unfortunately, t,raclitiorial 
approaclics to sequence homology searches usiiig BLAST have proven to  be too 
slow to ltcep up with the current rate of sequence a.cquisition [12]. 

Bccausc BLAST is both cuniputatioiinlly iiiteiisive and embarrassingly par- 
allel, inany approaches to pairallelizing its algorithms have been investigated [4, 
5,7,10,13-15]. We present an open-source pa.rallelixation of BLAST that seg- 
monts m c l  distributes a, I3LAST database among cluster nodes such that  each 
iiode searchcs a. uniquc portion of the database. 

Di\.tt\.base segnienta.lion in I1LAST ofl'ers two primary advantages over other 
pa.ra.lle1 I3LAST algorithms. First, data1m.w segmenta.tion can eliminate the high 
overliead of disk I/O. The sizes ol bioinforinaiic tlatabases are now larger t h m  
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core memory on most computers, forcing BLAST searches to  page t o  disk. 
Database segmentation permits each node to  search a smaller portion of the 
database, thus reducing (or even eliininating) extrnneous disk I/O, a.nd hence, 
vastly improving BLAST performance. With sequence databases doubling in size 
each year, the problem of extraiieous disk 1 / 0  is cxpectctl to persist. The acl- 
verse effects of disk 1/0 are so significant t1ia.t BLAST scarclies using clata.base 
segmentation can exhibit super-linear spcedup versus searches on a single node. 

Second, database segmentation in inpiBLAST does not produce heavy in- 
tercommunica.tion between nodes, allowing it to  continue a.chieving super-linear 
speedup over hundreds of nodes. Consequently, scientists using BLAST with 
database segmentation can take advantage of low-cost and highly efficient Linux 
clusters such as Green Desthy (8,16] 

mpiBLAST, an open-source parallelization of BLAST, uses the Message Pass- 
ing Interface [11] (version 1) to  implement database segmentation, allowing it to  
work on diverse system architectures. mpiBLAST has been designed to  run on 
clusters with job-scheduling software such as PBS (Porta.ble Batch System). In 
such environments, it adapts t o  resource changes by dynamically re-distributing 
database fragments. 

Peptide Nucleotide Da.tahase 
Nucleotide Peptide Query 

Pentide Pentide None 

2 The BLAST Algorithm 

BLAST searches a query sequence consisting of iiucleotitles (DNA) or peptides 
(amino acids) against a. datab<ase of nucleotide or peptide sequences. Because 
peptide sequences result from ribosomal translation of nucleotides, comparisons 
can be  made between nucleotide sequences and pcptide sequences. BLAST pro- 
vides functionality for comparing all possible combinations of query and data.base 
sequence types by transla.ting the seqiienccs on the fly. Tablc 1 lists the names 
used to refer t o  searches on each possible combination of query versus database 
type. 

Table 1. BLAST search types 

[Search NarnelQuery TypelDntahase Type1 Translat,ion 
.~ . . .. . . -~ I blastri I Nucleotide I Nucleotide I None I 

I I 

tblilstx I Nucleotide I Nucleotide 1Query a.rid Database 

The algorithms for each type of search operate nearly identically. The BLAST 
search heuristic [ 11 indexes both the query and target (database) sequence into 
words of a chosen size (11 nucleotides or 3 residues by default.). It then searches 
for matching word pairs (hits) with a score of at least T and extends the match 
along the diagonal. Gapped BLAST [2] consists of several modifications to  
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the previous algorithm that  result in both increased sensitivity and decreased 
runtime. Gappocl BLAST (herca.ft,er referretl to  simply as BLAST) moves down 
the secluences until it hiis foiiiitl two hits, ea.ch with a score of a t  least T, within 
A 1et.ters of each other. An ilngilpped extension is performed on the second 
hit, generating it ’high-scoring segment pair’ (HSP). If the HSP score exceeds 
LL second cutoff, a gapped extension is triggered simultaneously forward a.nd 
bacltward. Standarc1 BLAST out,put consists of a set of local gapped alignments 
fount1 within ea.cli query sequence, tlie alignment’s score, an alignment of‘ the 
query and  clef,iilmm sequences, a ~ i d  a ineasrire of the likelihood that  the alignmerit 
is a. rnntlom match betweell the query aiicl chtabase (e-value). 

3 Related Work 

3.1 BLAST Hardware Parallelieation 

1’a.re.lleli~ivtioii a.t the hardware level takes place during the sequence alignment 
itself. Such techiiiques are cihpable of pa.rallelixing the comparison of a single 
query sequence to a sirigle database entry, but require custom hardware with 
a greater degree of para.lleliza.tion than is present in symmetric multi-processor 
(SMP) or symmetric niulti-threa.cled (SMT) systems. The first hardware BLAST 
acce1eral;or was reported by R..I<. Singh [15]. More recentsly, TimeLogic [ 141 has 
commercialized a11 FPGA-based a.ccelora.tor called the DeCypher BLAST hard- 
ware accelerator. 

3.2 Query Segmentation 

Query segmentation splits up a. set of query sequences such that  each node in a 
cliister or CPU 011 an ShlP system searches a fraction of the query sequences. 
By doiiig so, several BLAST searches c a n  executo in parallel on different queries. 
B1,AST searches iisiiig qiiery segmentation on a. cluster typically replicate the 
entire diitabase on ea.cli node’s locd storage system [4, 51. If the data.bme is larger 
i h n  core memory, query-segirieiitecl searches sufler thc same adverse effects of 
disk I/O as  trditioiial BLAST. When the tia.tatmse fits in core memory, however, 
query segmento,lion can achieve new linear scalability for all BLAST search 
types, evcn on SVfP architectures [7] I 

3.3 Database Segmentation 

In dtitabase segmentation, intlependent segments of the database are searched 
on e i d l  processor or node, ~ n d  results a.re collated into a single output file. 
Seveml imp1ement;ations of clata.b,?se segmeiita,tion exist, the first of which was 
within NCDI’s BLAST itself. NCDI-I3 LAST implcmcnts data.base segnientation 
by multit1iree.cling the search such tha.t ea.ch processor in an SMP system is 
assigiiecl a distinct portion of tlie data.base. 

Data.base segmentation has also been implemented in a closed-source com- 
mercial product by T~~rboWorx, Inc. called TLirboBLAST [3,6]. TurboBLAST 



4 

provides ada tabase seginentstioii and distribution mechanism explicitly de- 
signed for use oii networlts of worltstations. By using TurboWorx’s proprietary 
TurboHub scheduling and load balancing software, TurboBLAST dynamically 
adapts to  the current cluster environment. However, its proprietary implementa- 
tion only results in linear speed-up (see http: //www. turboworx. com/products/ 
turboblast-overview . html). Furthermore, a recent survey on bioinformatics 
and Linux clusters (see http : //bioinf ormatics . org/pipermail/bioclusters/ 
2002-0ctober/000432. html) shows that mne of the sample population uses 
this distribution, primarily because of its exorbitant cost and its proprietary 
nature, which makes it difficult to integrate with ot,her bioinforinatics codes. 

Itecently another iinplementa.tioii of thtabase segmentation was released a.t 
ftp://saf.bio.caltech.edu/pub/software/molbio/parallelblast.tar.parallelblast 
is composed of a. set of scripts that  operate in the Sun Grid Engine/PVM envi- 
ronment. Aside from requiring the SGE/PVM environment, it  also differs from 
mpiBLAST in that it is not directly integrated with the NCBI toolkit and does 
not explicitly provide a load-balancing mechanism. 

4 mpiBLAST Algorithm 

Tlie mpiBLAST algoritlini coi1sist.s of two primary steps. First, the databasc is 
segmented and plijced on a shared stsorage device. Second; mpiBLAST queries 
are run 011 each node. If a. node does not yet have ii database fragment, to search, 
it copies a fmgment from shared storage. Fragment assignments to  each iiode 
are determined by an algorithm that minimizes the number of fra.gment copies 
during each search. 

4.1 

Database,formatting is clone by a wrapper for the standard NCBI formatdb 
called mpiformatdb. mpiformatdb formulates the correct command line arg~i- 
ments to muse NCBI formatdb to format and divide the database into inany 
small fragments of approximately equal size. Adclitional command line param- 
eters to  mpiformatdb allow the user to  specify the number of fragments or the 
.fragment size. Upon successful completion of formatdb, the formatted fragments 
are placed on shared storage. 

Querying the database is accomplished by directly executing the BLAST al- 
gorithm as implemented in the NCBI development library available at 
ftp: //ftp.ncbi .nih.gov/toolbox/ncbi-tools/. Upon sta.rtup, each worker 
process reports to  the master process which database fragments it alrea.dy has 
on local storage. Next, the mmter process (that with rank 0), reads the query 
sequences from disk and broadcasts them to all processes in the communica.tion 
group. When the query broadcast has completed, each process reports to  the 
master that  it is idle. The master, upon receiving ail idle message, assigns the 
idle worlter a. dat.abase fraginent to eit,lier scarcli or copy. Tlie worker copies or 

Formatting and Querying the Database 
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Algorithm 1 mpiBLAST master 
Let, resriilts be tlie curreut set of BLAST results 
Let F = {fl ,  fz, ...} be tlie set of data.base fragments 
Let, Unsearchecl C F be the set. of uiisea.rclied datalxwe fragineiits 
Let, Unassigned C F be the sol of uriassigncd database fragriients 
Let W = { u J ~ , u J ~ ,  .,.} be the set of pa.rticipa.tirig workers 
Let D, 
L d  Distributed=Q 

W I)(? I.tie sct of workers tlial, liave fmgirieut f, oil local st,orage 
1, Da, ,..} be the set, of D for each fragineiit 

Roquire: IWI .I/. 0 
Ensure: IUnsearchedl = 0 

Unsearched +- F 
Unassigned +- F 
r e s d t s  t a 
Broadcast queries to workers 
while IUnsearchedl # 0 do 

R.eceive a rrresscige from a worker '111,; 

if 'rrressuye is a state request, then 
if JUnassignedJ = 0 then 

else 

end if 

Find f i  such that ininD,E~istributed lDij arid fi 6 Unassigned 
if ID;[ = 0 then 

end if 
Rerriove 11; from Unassigned 
Serid fragriierit assigiiiiiciit j.; to worker 'wj 

Merge 'rrresstrye with ,rcs,irlts 

R.cttiiove f, f r o r r i  Unsearcliod 

Send worker ro,; the state SEAH.CH-COh/lPLETE 

Seiid worker the sta.te SEARCH-FRAGMENT 

else if 9rrLcusu.ye is a fragment request then 

Add 'UJ,~ to Di 

else if m c s x q e  is a. set of search results for fragrrierit f i  then 

end if 
end while 
Pririt 7~es.ult.s 
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searches its assigned fragment mid reports t o  the master that  it is idle when com- 
plete. This process is repeated until all database fragments have been searched. 

The master process uses a greedy algorithm to determine which fragments 
t o  assign each worker. First, if the idle worker has any unsearched fragments 
that  no other worker lias on local stora.ge, the worker is msignecl to  search the 
unique fmgment. If a worltcr has no unique fragment, the worker is assigned 
the unsearched fragment which exists on the smallest number of other worlt- 
ers. Finally, if an idle worker lias no unsearched fragments, it is told t o  copy 
the  unsearched fra.gmentexi sting on the fewest other worlters. The set of frag- 
ments currently being copied is tracked by the ma.ster t o  prevent duplicate copy 
assignments to  different worlters. 

Algorithm 2 mDiBLAST worker 
cpuev.ies t R.eceive tlir qiicries Goiii the master 
curr.rrt.tStiztc +- R.cceive the statc froin the riiaster 
while cnrre?itStcite # SEARCH-COAdPLEl'E do 

c?l77entF,~tc!lrtrr.,L2 +- R.cceivr ii fragiiieiit assigriiiieiit. froiii the iriastoi 
if cu7.7.erctF1.iigrriert.t is uot oil local storage then 

end if 
results c BL/IST(cper-ies, currentFricgrrt,ewt) 
Send results to master 

Copy currentFriryment to local storage 

currentstate t Receive the state from the master 
end  while 

When each worker completes a fragment search: it reports the results to  the 
master. The inaster merges the results from each worker and sorts thein accord- 
ing to their score. Once all results have been reccived, they are written to  a 
user-specified output file using the BLAST output functions of the NCBI devel- 
opment library. This approach t o  generating merged results permits mpiBLAST 
to directly product results in any format supported by NCBI-BLAST, including 
XML, HTML, tab  clelimited text, and ASN.l. 

5 mpiBLAST Performance 

NCBI-BLAST and mpiBLAST have Ixen benchmarked on several systems in 
an effort to characterize their performance and scahbility. We first present the 
performance of NCBI-BLAST when the tlata.l)ase is la.rger than core memory, 
demonstrating a. significant decrease in performance caused by additional disk 
I/O. Next, we show that  mpiBLAST (with its database-segmenting technique) 
a.chieves superlinear speed-up on multiple nodcs when the da.tabme is larger 
than the core memory of a single node. We continue by assessing the scala- 
bility of mpiBLhST to many nodes. Then, we present the additional running 
time incurred by various components of the mpiBLhST algorithm as it scales. 
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Our bencliinarlcing inethods have been carelully designed to accurately reflect a 
typical usage pattern by molecular biologists. 

5.1 Benchmarking Methods 

Wheii benchmarlting BLAST search performance, decisions about the type of 
see.rch to  perform can significa.ntly influence timing results. Factors such as query 
length, number of qucries, t o t d  database size, length of data.base entries, a.nd 
seqiimce simihrity hetweeii the query a.ncl da.ta.base entries a.ffect the a.moiint, 
of time consunid by the BLAST algoritlirn. [7] Each fa.ctor must be carefully 
consiclererl iT the bencliniarks a.re to a.ccurately reflect typical BLAST usage 
pa t tc i~ is  by iriolsci.ila.r biologist,s. 

We he#ve entleitvored t o  perform benchmarks that  model the typical usage of 
BLAST when integrated into it high throughput genome sequencing and a n n o t a  
tion pipeline. When used in this context, ea.ch BLAST query is a predicted gene 
in a ~iewly seqiienced organisni. The BLAST scarcli results are used t o  assist 
hurnan annotatms in determining the biological role of each predicted gene. [9] 
Because niany organisms have thousands oC genes, the large number of search 
queries generated by genome sequencing and annotation projects demand heavy 
computation. We have chosen to niodel this scetmrio beca.use sequencing and an- 
nota.t.ion projects can honefit from mpiBLAST's improved BLAST performance. 

The bendl11ii~,~lts clescribetl i n  the following sectioiis utilize predicted genes 
from a. newly sequeiicetl bacterial genonie as BLAST queries. The query gene 
lengths are approximately exponentia.lly distributed with a inearl 0 = 747.2 base 
pairs and si;a.nda.rd devia.tion u = 684.2. The da.ta.base sequences are talten from 
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the  GenBanli n t  database, a large public repository of 11011 retlundaiit, iiiicleoticle 
sequences. Ignoring a sinall number of outliers whose length is greater than 
25,000 bp, the length of the n t  datixbase entries can also bc reasonably approx- 
imated by an exponential dist.ribution where 0 = 1370. 

Linear S eedup - -1% 

rnpiBLAST. Green bestiny --* - -  _+ '  

- 

5.2 Low Memory Performance 

NCBI-BLAST was benchmarked on a. system with 128iVIB memory using in- 
creasingly large tli).tRbase sizes t,o tlet.ermine the efTect of cla.talmes t1ia.t do not 
fit in core memory. Each run measured the total ruiiiiing time of a blastn search 
using the same set of query sequences against a larger da.tabase. Weuti lized 
Linux's BSD process-accounting fa,cilities to  collect system-activity statistics. 

Figure 1 shows total BLAST run times alongside the average bloclts read per 
second from the disk for each database size tested. Formatted BLAST data.bases 
are compressed versions of the raw sequence clatabases. A formatted nucleotide 
database consumes approxima.tely 25% as much space as a text file containing the 
sequences. As the database size exceeds the total system memory size, BLAST 
running times and average blocks read per second increase sharply. Because the 
operating system can not cache the entire database BLAST must wait for it to  
be rerea.cl from disk when processing each query sequence. 

Like NCBI-BLAST, the perforinaim of mpiZ3LAST suflers when confronted 
with low memory conditions. However, because inpiBLAST effectively uses the 
aggregate incmory of all worker nodes, the database can grow much larger before 
causing extra disk I/O. 

120 a 
2 

100 
a, 

60 

cr) 60 

40 

20 

0 
0 20 40 60 80 100 120 140 
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Fig. 2. Speedup of inpiBLAST on Green Destiny. 300kh of query sequences were 
searched against a 5.1-GR datatme. The size of tlie forrriatted database is approx- 
irnately 1.2 GB, much larger t1ia.n the O40-MB core inernory per node. The search 
causes heavy disk 1 /0  wheii a siiigle tiotle is used. 



To get an overview of scalability when lhe database is larger than a sin- 
gle node’s core inemory, we benchmarlted mpiBLAST on Green Destiny [8, l G ] .  
Green Destiny is a 240-node bladed Beowulf cluster based on the Transmeta 
Crusoe processor. Each compute node consists of a 667-MHz TM5G00, G40MB 
RAM, 100-Mb/s Ethernet, a.ncl a 20-GB ha.rc1 drive running under Linux 2.4. 

Figure 2 shows InpiULAST performance moa.surements taken on Green Des- 
tiny. Frtj.gments ol‘ i1, 5.1-GB uincoinpressed database were pre-distributed to each 
worltcr a.nd a short query was executed to  prime the buffer-cache. By priming the 
cache, we hope to simulate the case when the cluster is processing many BLAST 
queries in quick succession. Each timed run used YoOKbytes of predicted gene 
sequences. 

The single worker search consumed 22.4 hours w1ierea.s 128 workers completed 
the  search in under 8 minutes. Relative t o  this single-worker case, mpiBLAST 
a.chieved super-linear speedup in all cases tested. However, as the number of 
workers increases the  eficiency of mpiBLAST decreases. 

Where The Time Goes 

I.!.:Lrz‘.T ”:”!.i? .................. 

! .) .I <! L1 13 I B )I !C 1 1  I >  13 14 I: ; d  ‘ 1  it; la  ?I! 21 :!1 2:. 21 xi 

Number of Workers 

Fig. 3. Ilow tiirie is spent iii inpiRLhST. Each baI is a coiiiposite that shows how time 
was speiit 011 the longest rurining worker. node in additiori to the time spent merging 
results by the Ina.ster node. Totill executioii time is largely dorriiiiated by BLAST search 
time. 

5.3 

The decrease in efliciency observed when scaling mpiBLAST to ma.ny nodes leads 
11s i,o irsk “Whiit, is nipil3LAST cluing wiih t.hc extra timc?” inpil3LAST’s running 
time ciin be decomposecl into five primary components: (1) MPI and mpiBLAST 
initializa.f,ion, (2) databme-fra,gnient copying time, (3) BLAST sea.rch time, (4) 
coniniuiiication time, aiicl  (5) resiili, nierging and printing time. In order to  de- 
termine how each componeni, coiltributes to the t o t d  execution time, we profiled 

Where does the time go? 



mpiBLAST with the MPE library to  collect wall-clock timing statistics aiid used 
gprof to  measure CPU usage. 

Measurements were talcen on systems located in the Galaxy cluster at SUNY 
Stony Brook. Ea.ch node contains dual 700-MHz Petitium I11 processors with 1- 
GB PC133 SDR.AM, 100-hIb/s Ethernet coiinectecl to a Founclry Networks Big 
Iron 8000 switch, and a 20-GI3 hard drive. 

Two gigabytes of the nt, da.tabase were formatted into 25 fragments. Each run 
measured the compoiicnts of execution time on 1 through 25 workers using the 
same set of database fragments and an 10-ltb query of predicted ORP sequences. 
Figure 3 shows the contribution of each component to the total running time of 
mpiBLAST. Based on these measurements, we conclude that for small numbers 
of workers, execution time is dominated by BLAST searches. As more workers 
are utilized, the time spent forma.tting and writing results grows relative to total 
execution time. Communication consistently accounts for less than 1% of the 
total execution time. 

Although some workers may finish before others during the search phase, 
the master waits until all workers have completed before formatting the results. 
Thus, the total execution time is depenclent, on the longest running worker. Ea.ch 
bar in Figure 3 shows the run-time of components of the longest running worker 
in addition to the time spent formatting by the mCwter in order to  accura.tely 
reflect the components of the total execution time. 

3000 
h 
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E 2500 
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5 2000 .- e 

- *  
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5 10 15 20 25 30 35 
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Fig. 4. The overhead of performing the same rripiBLAST search increases with the 
number of database fragments used. Each irieasureirieiit of ruririirig time (y-axis) was 
taker1 by forriiattirig an identical database with a varying riuiriber of fiagriients. The 
unusual numbers of database fragments arise because NCBI formatdb's segmentation 
method tries to guarantee a inaxiinuin fragrrient size, iiot a particular riumber of frag- 
ments. 
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The measureinelits discussed here were taken by searching the sa.me 25 frag- 
ment, cla.tal)ase with a variablc number of workers. In a seti,rcli using a single 
worlter, iill 25 fi'iigme11ts wo~il(l be assigned to the same worlter. When searching 
with 25 workers, oacli worlter soarches a. single fragment. However, when searcli- 
iiig with some nrniiber or worlters that  is not an even divisor of the number of 
frti.gmciits, a.11 i l n b i ~ l a ~ ~ ~  in the number of fragments searched by ea.ch worlter 
occurs. In such a scenario, sonic workers complete early while the other worlt- 
ers search the remaining fril,gments. Also, some database fragments may take 
much longer to  senrch t1ia.n others because the query sequence is very similar 
to that fragment. Siiice result formatting proceeds after all workers have com- 
pleted sea.rching, a.11 inibahiice in the ratio of workers t o  fragments can result in 
execution time 1)eyontl w1ia.t would be observed in the balanced case. 

One potent,ia.l soliitioii to  tlie problenis of imba.lance in the worlter/fragment 
ratio n.nd variiible fragnient searcli times would be segmenting tlie da.ta.bim iiito 
11. h rge  number of sinall hagments. The expectation is that  a. small fragment 
would get searched cpicltly. 111 the case of imbalance, worlters that  must search 
an ailditional fiagmeiit would not delay result formatting by much. In the case 
of highly variable fragment search times, the large number of fragments would 
allow mpiBLAST to  bala.nce the 1oa.d a.mong the workers, ~~ssigning additional 
da.tal)ase fragments to workers as they complete fragment searches, 

A tracleofl exists when segmenting the database into many small fragments 
because there is significant overhead in searching extra fragments. Figure 4 shows 
the t,otal execii tion time of inpiBLAST when searching the same database bro- 
ken iiito a. variable number of frtigments. Sea.idiing a 422 fragment versus a 105 
fragiiieiit datil,bas(! iiiciirs a n  addit.ional 140% wdl clock t h e .  The t h e  required 
t,o format a,nd output results increases with the number of fragments used, but is 
independcnt of l.lie number of processors iised. Figiue 6 shows immurements of 
the result fornia.tting and output component times for mpiBLAST when searcli- 
ing a clatabtwe broken into a variable number of fragments. 

The rnea.siirements suggest that  by varying the iiumber of da,ta,base frag- 
monts, :i,n mpiDLAST user c u i  trade aclditional CPU overhea,cl and some wall 
clock execution time for less variability in the execution time over different 
queries. 1iiclea.sing the number oC processors reliably shortens the execution time 
but lllily a.lso reqiiire increasing i,he iiuinber of database fragments, which in- 
crcmcs (,lie  cos^ of the serial rosult format, a.nd output component of execution 
time. The opt,imal bidailce bet,ween number of processors mid niimber of frag- 
incnl,s will depciitl 011 tlie priorit,ics of the indiviclu~ <I I user. 

Finally, it is iniportmit i,o iiote thiit i n  inany cases fraignient copy time will be 
negligible or rion-existent because the database will have already been distributed 
during a previous search. 

G Future Work 

Them are several directions for future work on mpiBLAST's algorithms. mpi- 
BLAST does not provide transparent fault tolerance when a node goes down. A 
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Fig. 5 .  Tlie overhead of forrnattiitg aid outputtiiig result,s for the same rnpiBLAST 
search increases with the nuiriber of database fragirterits used. The time spent format- 
ting arid outputtiiig results is irideperident of tlie nmnber of processors used because it 
is a serial coinporieiit of the algoritlirn executed 011 the master node. 

transparent fault tolerance mechanism could be easily integrated into the current 
InpiBLAST algorithm. Each node would periodically message the master that  
it is still alive and searching, If the master does not receive a message from a 
particular iiode before a timeout occurs, that  node's work would be reassigned to  
another node. Ragnietit searching would continue as normal without tlie downed 
node. 

A second potential improvement to  tlie mpiBLAST algorithm is the integra- 
tion of database updates. To implement such a scheme, each node could check 
a central repository of versioning information for the database fragments. If a 
fragment has been updated the node responsible for processing that  fragment 
can retrieve an updated copy of tlie fragment. Tlie master node would also check 
the  database for new fragments that  should be searched. 

Because mpiBLAST spends the majority of its time executing NCBI Toolbox 
code, improvement t o  the Toolbox could signficantly influence performance. Our 
me~lsureineiits indicate that  there is high overhead for using additional database 
fragmcnts. Further profiling t o  rccluce the fi agment overhead would allow mpi- 
BLAST to more efficiently load-balance the search and r e d i m  total search time. 

7 Conclusion 

We have described mpiBLAST, an open-source, MPI-based implementation of 
databasc segmentation for parallel BLAST searches. Database segmentation 
yields near linear speedup of BLAST in most. cases ant1 super-linear speedup 
in low mcmory conditions. nipiBLAST directly interfaces with the NCBI de- 
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velopnient library to  provide I3LAST users with interface and output formats 
identical to  NCBI-BLAST. 

Finally, ana.lyzing the components of mpiBLAST's running time shows that  
the bulk oC execiition time is spent perforining BLAST searches. Communication 
consiiines a relatively snia.11 portion oE time. Merging aid printing BLAST results 
;rlso represents ij rcla.tively sninll ainouiit, of the total execution time. Our findings 
iiirlicntx t,hii.t; i r i l ) i  I31,AST scil.leR well to  at, least, one hunrlrcd nodes. 
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